Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9084, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643332

ABSTRACT

Immunomodulatory properties of mesenchymal stem cells are widely studied, supporting the use of MSCs as cell-based therapy in immunological diseases. This study aims to generate cell-free MSC extract and improves their immunomodulatory potential. Intracellular extracts were prepared from adipose-derived stem cells (ADSC) spheroid via a freeze-thawing method. The immunomodulatory capacities of ADSC spheroid extracts were investigated in vitro, including lymphocyte proliferation, T regulatory cell expansion, and macrophage assays. A comparative study was conducted with ADSC monolayer extract. The key immunomodulatory mediators presented in ADSC extract were identified. The results revealed that ADSC spheroid extract could suppress lymphocyte activation while enhancing T regulatory cell expansion. Immunomodulatory molecules such as COX-2, TSG-6, and TGF-ß1 were upregulated in ADSC priming via spheroid culture. Selective inhibition of COX-2 abrogates the effect of ADSC extract on inducing T regulatory cell expansion. Thus, ADSC spheroid extract gains high efficacy in regulating the immune responses which are associated in part by COX-2 generation. Furthermore, ADSC spheroid extract possessed a potent anti-inflammation by manipulation of TNF-α production from LPS-activated macrophage. Our current study has highlighted the opportunity of using cell-free extracts from adipose tissue-derived mesenchymal stem cells spheroid as novel immunomodulators for the treatment of immunological-associated diseases.


Subject(s)
Immunosuppression Therapy , Stem Cells , Cell Extracts , Cyclooxygenase 2 , Adipose Tissue
2.
J Orthop Surg Res ; 19(1): 255, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650022

ABSTRACT

Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.


Subject(s)
Adipose Tissue , Osteoblasts , Osteogenesis , Osteogenesis/drug effects , Osteogenesis/physiology , Osteoblasts/drug effects , Humans , Adipose Tissue/cytology , Stem Cells/drug effects , Cells, Cultured , Cell Differentiation/drug effects , Cell Extracts/pharmacology , Animals
3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293376

ABSTRACT

Osteoporosis is frequently found in chronic diabetic patients, and it results in an increased risk of bone fractures occurring. The underlying mechanism of osteoporosis in diabetic patients is still largely unknown. Annexin A2 (ANXA2), a family of calcium-binding proteins, has been reported to be involved in many biological process including bone remodeling. This study aimed to investigate the role of ANXA2 in mesenchymal stem cells (MSCs) during in vitro osteoinduction under high-glucose concentrations. Osteogenic gene expression, calcium deposition, and cellular senescence were determined. The high-glucose conditions reduced the osteogenic differentiation potential of the MSCs along with the lower expression of ANXA2. Moreover, the high-glucose conditions increased the cellular senescence of the MSCs as determined by senescence-associated ß-galactosidase staining and the expression of p16, p21, and p53 genes. The addition of recombinant ANXA2 could recover the glucose-induced deterioration of the osteogenic differentiation of the MSCs and ameliorate the glucose-induced cellular senescence of the MSCs. A Western blot analysis revealed an increase in p53 and phosphorylated p53 (Ser 15), which was decreased by recombinant ANXA2 in MSC osteoblastic differentiation under high-glucose conditions. Our study suggested that the alteration of ANXA2 in high-glucose conditions may be one of the plausible factors in the deterioration of bones in diabetic patients by triggering cellular senescence.


Subject(s)
Annexin A2 , Mesenchymal Stem Cells , Osteoporosis , Humans , Osteogenesis/genetics , Annexin A2/genetics , Annexin A2/metabolism , Tumor Suppressor Protein p53/metabolism , Calcium/metabolism , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Cellular Senescence/genetics , Osteoporosis/metabolism , Glucose/pharmacology , Glucose/metabolism , beta-Galactosidase/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...